Rose Technologies
  • Home
    • Client Login
    • Partner Login
    • Associates Login
  • About Rose
  • Services
    • Big Data Analytics Infrastructure
    • Data Science & Analytics Professional Services
    • Business Intelligence Data Warehouse >
      • Data Warehouse / Business Intelligence (DW/BI)
      • Master Data Management (MDM)
      • Successful Business Intelligence Deployment Best Practices
      • Trends in Business Analytics
      • Mobile Business Intelligence (BI)
      • BI Best Practices in Midmarket Organizations
      • BI for Business Users
      • Big Data Potential
      • Clouds, Big Data, and Smart Assets
      • Big Data Innovation, Competition and Productivity
      • Game-changing Effects of Big Data
      • Analytics: The Widening Divide
      • Top Benefits of Analytics
      • Predictive Analytics E Guide
      • Business Intelligence, Analytics and Performance Management, Worldwide 2011
      • Big Data BI and Analytics
      • Data Wharehouse Management Best Practices
      • Business intelligence (BI) Geospatial Cloud Computing
      • Data Warehousing Technology Trends
      • Reasons to Offload Analytics from your Data Warehouse
      • Analytics: The New Path to Value
      • Trends in Predictive Analytics
      • Data Insight and Action
      • Converged Data Center
      • Turning Decisions into Profit with Business Analytics and Optimization
      • Game-changing Business Analytics Trends
      • Business Intelligence Platforms Magic Quadrant 2012
      • Dynamic Case Management Vendors Wave 2011
      • Enterprise Data Warehousing Platforms Wave 2011
      • Database Auditing and Real-Time Protection Wave 2011
      • Data Quality Tools Magic Quadrant 2011
      • Data Warehouse Database Management Systems Magic Quadrant 2011
      • Enterprise Business Intelligence Platforms Wave 2011
      • Enterprise Hadoop Solutions Wave 2012
    • Private / Hybrid Cloud Solutions >
      • Private Hybrid Cloud Value and Evolution
      • Cloud Definition and Type Comparisons
      • Future of Cloud Computing
      • Adopting the Application-centric Private Cloud
      • Private Cloud Decision Analysis
      • Four Stages to Virtualization Maturity
      • Benefits of Infrastructure as a Service (IaaS)
      • Benefits of Platform as a Service (PaaS)
      • Benefits of Software as a Service (SaaS)
      • Private Cloud Market Offerings
      • Economics of the Cloud
      • Cloud Compliance Issues
      • Cloud Security
      • From Secure Virtualization to Secure Private Clouds
      • Cloud Buyers Guide Government
      • Cloud Hybrids
      • U.K. Officials Put Classified Information in the Cloud
      • Cloud Computing Review June 2011
      • Private Cloud Solutions 2011
      • Selecting a Cloud Computing Platform
      • Study on Reducing Labor Costs with Private Cloud
      • Future Internet Report May 2011
      • Cloud Security Issues
      • Simplifying Private Cloud Operations
    • Mobile Technology >
      • Mobile Strategy
      • Mobile Technology
      • Mobile Security Policy and Rules
      • Mobile Device Management
      • Mobile Collaboration
      • Mobile Business Intelligence (BI)
      • Manufacturer Operating System Share for Smartphones Q2 2011
      • Future of Enterprise Mobile
      • Internet Trends 2010 by Morgan Stanley Research
      • Oracle Mobile Computing Strategy
      • Rugged vs. Commercial: Total Cost of Ownership Of Handheld Devices
      • Designing Mobile Devices Improve Productivity
      • How Will Mobile Change Your Future 2011
      • Tablet Market Prices Comparison October 2011
      • How Workers Adopt And Use Business Technology
      • Mobile Data Protection 2011 Magic Quadrant
      • Benefits of Mobile WAN Optimization
      • Business Smartphone Selection
      • Corporate Telephony Magic Quadrant 2011
    • Enterprise Resource Planning >
      • ERP Selection Considerations
      • ERP SaaS Cost, Customization, Security
      • ERP Implementation Best Practices
      • Successful Enterprise Resource Planning Implementation Practices
      • ERP Systems Buyer’s Guide
      • Best Practices for Selecting Midmarket ERP Software
      • ERP for Small Businesses: A Buyer’s Guide
      • Enterprise Resource Planning Selection Process
      • ERP Comparison Guide
      • Overview of 2011 ERP Report
      • 2011 ERP Report of Panorama Consulting
      • Enterprise Resource Planning (ERP) Priority Matrix
      • Customer Relationship Management (CRM) Suites Leaders
      • Enterprise Resource Planning (ERP) Upgades Project Management Best Practices
      • CRM Multichannel Campaign Management Magic Quadrant 2011
      • Integrated Marketing Management Magic Quadrant 2011
      • Marketing Resource Management Magic Quadrant 2012
      • Corporate Learning Systems Magic Quadrant 2011
      • E-Discovery Software Magic Quadrant 2011
    • Enterprise Content Management >
      • Content-centric Approach for ECM Strategy
      • Enterprise Content Management (ECM) Planning
      • Evaluating and Selecting Content Analytics Tools
      • IBM’s Watson Content Analytics Technology
      • Collaboration Dynamic Case Management
      • Enterprise Content Management Magic Quadrant 2011
      • Web Content Management Magic Quadrant 2011
      • Content-Centric Enterprise Content Management
      • Document Output Customer Communications Management Wave 2011
      • Enterprise Content Management Wave 2011
    • Virtualization >
      • Top 7 Reasons to Virtualize Infrastructure
      • Virtualization Overview
      • Benefits of Server Virtualization
      • Benefits of Storage Virtualization
      • Benefits of Network Virtualization
      • Benefits of Data Virtualization
      • Data Virtualization Reaches Critical Mass
      • Four Stages to Virtualization Maturity
      • Top Reasons to Deploy Virtual Desktops
      • Virtual Infrastructures
      • Virtualization and Consolidation vs. Application Performance and WAN Optimization
      • Virtual Servers and Storage Systems
      • State of Virtualization and Cloud Computing 2011
      • Virtualization Hardware Selection
      • Virtualization Server Infrastructure Magic Quadrant 2011
    • Managed Services >
      • Benefits of Infrastructure as a Service (IaaS)
      • Benefits of Platform as a Service (PaaS)
      • Benefits of Software as a Service (SaaS)
      • Key Trends Shaping the Future of Data Center Infrastructure
      • Future of Cloud Computing
      • Gartner’s Top Predictions for IT 2011 and Beyond
      • Global IT Infrastructure Outsourcing 2011
      • Study on Reducing Labor Costs with Private Cloud
      • WAN Optimization Controllers Magic Quadrant 2011
      • Application Performance Monitoring Magic Quadrant 2011
      • Tech Trends Report 2011 IBM
      • Gartner Predictions for 2012
      • Enterprise Service Bus (ESB) Vendor Evaluation 2011
      • Modular Disk Arrays Magic Quadrant 2010
      • Ensure Reliable Service Delivery by Linking Infrastructure and APM
      • Cloud Infrastructure as a Service Magic Quadrant 2011
      • Unified Communications Magic Quadrant 2011
      • Integrated Software Quality Suites Magic Quadrant 2011
      • Customer Management Contact Center BPO Magic Quadrant 2011
      • Application Security Testing Magic Quadrant 2012
      • Web Conferencing Magic Quadrant 2011
      • Endpoint Protection Platforms Magic Quadrant 2012
      • Enterprise Architecture Management Suites Wave 2011
      • Backup Recovery Software Magic Quadrant 2011
      • Business Process Analysis Tools Magic Quadrant 2012
      • Database Marketing Service Providers Wave 2011
      • Customer Relationship Management Service Contact Centers Magic Quadrant 2011
      • Employee Performance Management Magic Quadrant 2011
      • Enterprise Architecture Tools Magic Quadrant 2011
      • Enterprise Governance Risk Compliance Platforms Wave 2011
      • Enterprise Network Firewalls Magic Quadrant 2011
      • External Controller Based ECB Disk Storage Magic Quadrant 2011
    • Custom Application Development
    • Knowledge Management
    • System Architecture Design
    • Data Management >
      • Data Storage Technologies
      • Primary Storage Data Reduction
      • Data Protection for Small and Medium-Sized Business
      • Keeping Product Data Clean
      • Data Center Outsourcing Services
      • Data Center / Infrastructure Utility Outsourcing Services 2011
      • Data Integration Tools Magic Quadrant 2011
    • Systems Administration
    • E-Commerce
  • Partners
    • About Rose Partners
  • Professional Expertise
    • Professional Certifications
    • White Papers
    • IT Expertise
    • Technologies
    • Programming Languages
  • Careers
  • Contact
  • Blog

How, Exactly, Is Big Data Going to Change the World?

11/30/2013

0 Comments

 
0 Comments

Big Data and the Rise of Augmented Intelligence

11/26/2013

0 Comments

 
0 Comments

U.S. Mobile Commerce Spending

11/25/2013

0 Comments

 
Picture
0 Comments

U.S. E-Commerce Sales

11/24/2013

0 Comments

 
Picture
0 Comments

New Global Communications Ecosytem

11/21/2013

0 Comments

 
Picture
0 Comments

GPU is Common Ground between HPC and Hadoop

11/20/2013

0 Comments

 
Post by Michael Malak - Data Science Association

My previous blog post "HPC Game Changer: IBM & NVidia New Architecture" was not well-received by some in the HPC community.

Yesterday at SC13, I attended at least two presentations about Hadoop and HPC. Hadoop 2 and HPC: Beyond MapReduce, presented by Cray, Inc., further illustrated some of the miscommunication between the two camps. During Q&A, someone asked, "Have you measured against Spark? Hadoop is an entire ecosystem; you have to look at Spark and streaming technologies such as Storm, too, not just Hadoop itself," the Cray representative responded that they're just about to start looking at Spark. (For more on the Apache Spark project, see my 20-minute overview video.) Right away, what a Hadoop person means by "Hadoop" (an entire ecosystem) and what an HPC person means by "Hadoop" (a specific release from Apache in isolation) are different.

After that, though, it started looking even worse for HPC, at least for Cray in particular. The very last question from the audience came from a woman whose tone implied she was surprised no one else had asked the question earlier, something to the effect of, "Isn't there a performance penalty when running Hadoop on a Cray HPC due to the data being centralized on a single server as opposed to the data being distributed amongst the nodes as in a conventional Hadoop cluster?" The response from the Cray representative was that the performance ended up being about the same.

Questions were over by then, and the next logical and obvious question was not asked out of both politeness to the Cray representative and the lack of time: What is the performance per dollar of a Cray running Hadoop vs. a conventional Hadoop cluster on commodity hardware?

Now, to be fair, I'm sure the Cray representative was referring to a comparison on a "Big Data" problem. To digress into this important distinction: there are (at least) three broad categories of problems.

  1. Scientific simulation or processing. This is where conventional HPC is strong, because data is read at most once and sometimes not at all (e.g. for 3D movie rendering), and computational power is paramount.
  2. Big Data, where massive data from various sources is "dumped" onto a Hadoop cluster in the hopes that sometime in the future insights will be gleaned. In this second scenario, the data just sits on Hadoop, and gets processed and reprocessed at various times in the future.
  3. Streaming, which is the extension of batch-oriented Big Data to real-time. The new streaming technologies such as Storm, Spark Streaming, and S4 address this, and I'm not aware of any HPC vendor addressing this class of problem. Indeed, when that first questioner pressed the issue of streaming technology, the Cray representative did not have an answer.

So while HPC excels at the domains to which it has conventionally been applied (#1 above), there are domains (#2 and #3 above) where Hadoop, by its introduction of the topology of bringing the compute to the data, excels and does so in a cost effective manner. HPC vendors are now looking at Hadoop for two reasons:

  1. The classes of problems that their systems don't handle as well or as cost-efficiently.
  2. To leverage the comparative ease of programming Map/Reduce compared to OpenMP/MPI, the large community and body of knowledge surrounding Hadoop, as well as the popularity of Hadoop and Big Data. Indeed, one SC13 panelist in another session mentioned the difficulty of attracting students into HPC programs due to the popularity of Hadoop and Big Data.
It is this issue of topology that was my primary point in my previous blog post -- the idea of bringing compute closer to data. This idea was echoed by many speakers in many sessions at SC13 as being a long-term goal and a way to reinvent HPC. The IBM/Nvidia announcement of their joint work was the only concrete realization of this much-shared goal that I've heard here at SC13.

To clarify my point about interconnects from my previous blog post, the interconnect speeds of HPC vs. Hadoop underscore the importance of topology. HPC often uses 40Gbps Infiniband (which has the additional advantage of remote direct memory access (RDMA) to eliminate CPU involvement in communication), whereas Hadoop conventionally has just used 1Gbps Ethernet. For the class of Big Data problems, Hadoop achieves its performance even with the much slower interconnect. There is certainly nothing wrong with Infiniband itself; the point is the opposite, that because such a powerful technology is needed in HPC illustrates the weakness of conventional HPC topology, at least for some classes of problems.

But the set of Big Data problems that Hadoop is good at solving is expanding, thanks to projects like Apache Spark. Hadoop's disk-based implementation of Map/Reduce has conventionally been very poor at iterative algorithms such as machine learning. That is where Apache Spark shines, which instead of distributing data across the disks of a cluster like plain Hadoop does, distributes data across the RAM memories of machines in a cluster. With Apache Spark, 10Gbe or faster becomes useful -- no more waiting for data to stream off disk. The combination of RAM-based mass data storage and higher-speed interconnects is bringing Hadoop into even more domains conventionally handled by HPC. A Hadoop cluster running Apache Spark over 10Gbe where each node has a lot of RAM (say, 512GB today in 2013) starts to look like and certainly at least starts to solve some of the same problems as HPC.

The overlap and "convergence" (as the Cray representative had a slide on) of HPC and Hadoop is growing, due to the performance improvements and expanded domains and software infrastructure (e.g. streaming technology) in Hadoop, and due to HPC vendors adopting Hadoop for the two reasons stated above. The two communities are working to find common ground.

Going forward, that common ground is coming in the form of GPUs. Both HPC and Hadoop communities are adopting GPU technology and heterogeneous computing at a rapid pace, and hopefully as each community moves forward, they will be able to cross-pollinate architectures and understanding of problem domains. The Hadoop community has HPC-like problems, and the HPC community is having to deal with Big Data due to the explosion of data. While there are many success stories already of one or two racks of GPUs replacing room-sized HPCs, the IBM/Nvidia engineering partnership promises to take it to the next level beyond that due to their stated goal of moving compute closer to the data.
0 Comments

HPC Game Changer: IBM & NVidia New Architecture

11/19/2013

0 Comments

 
Post by Michael Malak - Data Science Association

The big announcement at SC'13, the International Supercomputing conference sponsored by IEEE and ACM that is in its 25th year and that this year is in Denver, came from an IBM VP, speaking at the Nvidia booth. I believe the VP was Dave Turek.

The announcement did make the press, even the Wall Street Journal, but the press is not reporting the magnitude of the announcement, possibly because they were working off press releases rather than the technical details relayed by the IBM VP late in the evening during tonight's opening night gala portion of the conference.

It's more than just marrying Nvidia GPUs to IBM's forthcoming POWER8 processor. POWER7 is what powers Watson, and although the POWER series and the Xeon series leapfrog each other in raw chip benchmarks, IBM engineers its High-performance computers (HPC) holistically, with its own POWER CPUs, its own processor boards, and most importantly, its own architecture to maximize throughput. Real-world applications run twice as fast on POWER systems than they do on Xeon systems.

No, what the surprising, and welcome, proclamation from the IBM VP is was "the end of the server in HPC" -- I haven't seen that quote yet in any press covering the general announcement. Anyone who has seen a modern-day "supercomputer" walks away disappointed -- the racks of commodity-like PCs simply strung together with Infiniband. This has led to the modern HPC mantra lament of "We've got compute out the wazoo -- it's I/O we need more of."

That's one reason why Hadoop was a stunning upset to the HPC community. HPC usually completely separates compute from storage, with storage relegated to a system like Lustre. Oh, the file systems are so-called "parallel file systems," but all that really means is that the pipe is made fatter by having multiple parallel pipes each of standard size. At a 30,000 foot PowerPoint view, it's still just two bubbles, one for compute and one for storage, connected by one line.

Hadoop introduced the novel idea of bringing the compute to the storage. (BTW, the other reason for Hadoop's popularity is that the Map/Reduce API and its even higher abstractions of Pig and Hive are orders of magnitude easier to program for than the marriage of MPI/OpenMP that has become the standard in the HPC world. But the easier Map/Reduce API actually comes with a performance penalty, compared to hand-tuned MPI/OpenMP software.)

When the IBM VP said "end of the server," he went on to explain that IBM intends to incorporate GPUs throughout the entire architecture and "workflow" as he put it, including directly into storage devices. He wouldn't elaborate on exactly where else in their architectures that IBM would incorporate GPUs, but he said something to the effect of, "if you study our past architectures and see the direction we were going in and project out into the future, that probably won't be too far off."

This is quite a change from 2009, when Dave Turek said: "The use of GPUs is very embryonic and we are proceeding at an appropriate pace". 

Turek believes the industry has entered a period of evaluation that will last between 18 to 24 months and there will be a gradual dissemination into more conventional segments.

Putting GPU in the storage is taking the Hadoop idea of bringing compute to storage to the next level.

It's a whole new paradigm in HPC. The chapter of the past two decades of "lots of servers + Infiniband" is about to be closed, and a new one opened by IBM and Nvidia.
0 Comments

Insight and Innovation For Data Scientists

11/18/2013

0 Comments

 
0 Comments

Apple and Samsung Rule Smartphones

11/15/2013

0 Comments

 
Picture
0 Comments

Beyond Data Visualization

11/14/2013

0 Comments

 
0 Comments
<<Previous

    Rose Technology

    Our mission is to identify, design, customize and implement smart technologies / systems that can interact with the human race faster, cheaper and better.

    Archives

    May 2017
    November 2016
    October 2016
    September 2016
    August 2016
    July 2016
    June 2016
    May 2016
    April 2016
    March 2016
    February 2016
    January 2016
    December 2015
    November 2015
    October 2015
    September 2015
    August 2015
    July 2015
    June 2015
    May 2015
    April 2015
    March 2015
    February 2015
    January 2015
    December 2014
    November 2014
    October 2014
    September 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    November 2013
    October 2013
    September 2013
    August 2013
    July 2013
    June 2013
    May 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    November 2012
    October 2012
    September 2012
    August 2012
    July 2012
    June 2012
    May 2012
    April 2012
    March 2012
    February 2012
    January 2012
    December 2011
    November 2011
    October 2011
    September 2011
    August 2011
    July 2011

    Categories

    All
    Accumulo
    Adrian Bowles
    Algorithms
    Analytic Applications
    Analytic Applications
    Analytics
    Andriod
    Android
    Android Tablets
    Apache Falcon
    Application Performance Monitoring
    Application Security Testing
    Artificial Intelligence
    B2b Marketing
    Backup Recovery Software
    Benefits Of Data Virtualization
    Blackberry. Palm
    Blade Servers
    Boot Camp
    Bpaas
    Business Analytics
    Business Cloud Strategy
    Business Data
    Business Data
    Business Improvement Priorities
    Business Improvement Priorities
    Business Inteligence
    Business Inteligence
    Business Intelligence
    Business Intelligence
    Business Intelligence And Analytics Platform
    Business Process
    Business Process Analysis Tools
    Business Smartphone Selection
    Business Technologies Watchlist
    Business Technology
    Case Management
    Cassandra
    Cio
    Client Management Tools
    Cloud
    Cloud Assessment Framework
    Cloud Business Usage Index
    Cloud Deployment Model
    Cloud Deployment Model Attributes
    Cloud Gateways
    Cloud Strategies Online Collaboration
    Cluster Architectures
    Cognitive Computing
    Collaboration
    Computational Experiments
    Computer Platforms
    Conference
    Connectivity
    Content
    Content Analytics
    Core Technology Rankings
    Corporate Learning Systems
    Corporate Telephony
    Cost
    Crm
    Crm Multichannel Campaign Management
    Customer Communications Management
    Customer Management Contact Center Bpo
    Customer Relationship Management
    Customer Service Contact Centers
    Customization
    Cybernetic Employees
    Cybernetic Era
    Data
    Data Analytics Lifecycle
    Data Archiving
    Database
    Database Auditing
    Database Management Systems
    Data Center
    Data Center. Database
    Data Center Outsourcing
    Data Center Outsourcing And Infrastructure Utility Services
    Data Growth
    Data Integration Tools
    Data Loss Prevention
    Data Management Stack
    Data Mining
    Data Quality
    Data Quality Tools
    Data Science
    Data Science
    Data Silos
    Data Stack
    Data Theft
    Data Virtualization
    Data Visualization
    Data Volume Variety Velocity
    Data Volume Variety Velocity Veracity
    Data Warehouse
    Data Warehouse Database Management Systems
    Deep Learning
    Dido
    Digital Subterfuge
    Document Output
    Dr. David Ferrucci
    Dr. John Kelly
    Ecm
    E Commerce
    E-Commerce
    E Discovery Software
    Emerging Technologies And Trends
    Employee-Owned Device Program
    Employee Performance Management
    Endpoint Protection Platforms
    Enterprise Architecture Management Suites
    Enterprise Architecture Tools
    Enterprise Content Management
    Enterprise Data Warehousing Platforms
    Enterprise Mobile Application Development
    Enterprise Resource Planning
    Enterprise Service Bus
    Enterprise Social Platforms
    Erp
    Erp Demonstrations
    Financial Services
    Forecasting
    Forrester
    Fraud Detection
    Future It
    Galaxy
    Galaxy Nexus
    Gale-Shapley Algorithm
    Gartner
    Global It Infrastructure Outsourcing 2011 Leaders
    Global Knowledge Networks
    Global Network Service Providers
    Google Glasses
    Google Wallet
    Hadoop
    Hadoop Technology Stack
    Hadoop Technology Stack
    Hardware As A Service
    Hbase
    Health Care And Big Data
    Hidden Markov Models
    High Performance Computing
    High-performance Computing
    Human Resources
    Iaas
    Ibm
    Ibm Big Data Platform
    IBM's Watson
    Iconsumer
    Information
    Information Capabilities Framework
    Information Management
    Information Workers
    Infosphere Streams
    Infrastructure As A Service
    Infrastructure Utility Services
    In-memory Grid
    Innovation
    Integrated It Portfolio Analysis Applications
    Integrated Software Quality Suites
    Internet
    Internet Of Things
    Internet Trends 2011
    Ipad
    Iphone
    Iphone 4s
    It Innovation Wave
    Jeff Hammerbacher
    Job Search
    Key Performance Indicators
    Kindle Fire Tablet
    Lambda Architecture
    Lifi
    Long Term Evolution Network Infrastructure
    Machine Data
    Machine Learning
    Machine Learning
    Magic Quadrant
    Mainframe
    Managed Hosting
    Managed Security Providers
    Manufacturing
    Mariadb
    Marketing Resource Management
    Marketing Resource Management
    Mark Weiser
    Master Data
    Master Data Management
    Maxent Classifiers
    Mdm
    Media Tablet
    Microsoft Big Data Platform
    Microsoft Dynamics Ax
    Mlbase
    Mobile
    Mobile App Internet
    Mobile Application Development
    Mobile Business Application Priorities
    Mobile Business Intelligence
    Mobile Collaboration
    Mobile Consumer Application Platforms
    Mobile Data Protection
    Mobile Development Tool Selection
    Mobile Device Management
    Mobile Device Management Software Magic Quadrant 2011
    Mobile Devices
    Mobile Internet Trends
    Mobile Payments
    Mobile Payment System
    Modular Disk Arrays
    Modular Systems
    Mysql
    Naive Bayes
    Natural Language Processing
    Network
    Networked Society
    Network Firewalls
    Network Infrastructure
    Network Virtualization
    N-gram Language Modeling
    Non-Computer Traffic
    Nosql Database
    Operating System
    Oracle
    Paas
    Pioneering The Science Of Information
    Platform As A Service
    Predictive Analytics
    Prescriptive Analytics
    Primary Storage Reduction Technologies
    Python
    Real Time Analytics
    Real-time Analytics
    Real-time Bidding Ad Exchange
    Recommendation Engines
    Retail Marketing Analytics
    Rim
    Risk
    R Language
    Robotics
    Saas
    Sales Force Automation
    Sap Big Data Platform
    Scala
    Scenario-Based Enterprise Performance Management (EPM)
    Search
    Security
    Security Information & Event Management
    Selection Process
    Self-Service Business Intelligence
    Sensors
    Server Virtualization
    Service Oriented Architecture
    Smart City
    Smarter Computing
    Smartphones
    Social Media
    Software As A Service
    Sony Tablet S
    Spark
    Sports Analytics
    Spying
    Steve Jobs
    Storage Virtualization
    Storm
    Strategy
    Stream Processing
    Survey Most Important It Priorities
    Symantec
    Tablet
    Tablets
    Technology
    Technology Industry Report Card
    Technology Innovation
    Technology M&A Deals
    Technology Sourcing
    Text Mining
    Ubiquitous Computing
    User Authentications
    Vector-space Models
    Vendor Due Diligence
    Vertical Industry It Growth
    Videoconferencing
    Virtual Desktops
    Virtualization
    Virtual Work
    Visualization
    Wan Optimization
    Watson
    Wave
    Wearable Device
    Web Conferencing
    Web Content Management
    Web Hosting
    Windows Mobile
    Wireless
    Wireless Data
    Wireless Technologies
    Workload Optimization

    RSS Feed

Powered by
✕